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SUMMARY

Factor analysis and other matrix manipulation techniques are applied to some
data arrays obtained by successive scanning in two chromatographic-spectrometric
systems: high-performance liquid chromatography-uitraviolet (HPLC-UV) and gas
chromatography-mass spectrometry (GC-MS), the former containing both real and
simulated data and the latter simulated data only. In all multi-component cases
considered, the substances are assigned identical retention behaviour, or have very
neazly the same experimental retention times. In the HPLC system, the method is a
generalization of the absorbance-ratio technique for the determination of peak purity
where no choice of suitable wavelengths need be made. Factor analysis reveals the
number of hidden components and, in a three-component GC-MS example, a computer
programme (UNRAVL) is employed to extract the pure component mass spectra.

INTRODUCTION

Factor analysis, in the form of matrix rank analysis (MRA) has found a large
number of chemical applications, particularly for the calculation of the pumber of
overlapping components in arrays of fluorescence and absorption spectral-7. A similar
technique, principal components analysis (PCA)S, has also been applied to the analysis
of arrays of overlapping absorption specira® 2. Moniciro and Reed®® used MRA to
calculate the number of overlapping components in a mass spectral data array and
PCA was applied by Davis ez al.!* to the spectra of binary mixtures obtained by gas
chromatography-mass spectrometry (GC-MS). Ritter ef al.?® also used PCA success-
fully to calculate the number of components in several mass spectra of mixtures.
Both techniques, MRA and PCA were employed by Halket and Reed to analyse mass
spectral data arrays obtained by scanning during direct probe evaporation's-'’. More
recently, MRA and PCA have been employed to investigate steroid mass spectra of
liquid chromatographic fractions containing up to four components!®, repetitively
scanned stero! GC-MS data!® and also some simuiated data matrices obtained by
successively scanning UV spectra across a high-performance liquid chromatographic



(HPLC) peak containing up to four components?. Other chromatographic applica-
tions of factor analysis, but not mvolvmg spectra, include a study of retention data“

and peak shapes®.
In this paper, factor analysis is applied to several simuiated HPLC data arrays

containing up to three components having the same reiention characteristics but
present in different amounts. In addition two actual examples of scanning UV
spectra across HPLC peaks after stopping the pump are presented.

Although the determination of the number of spectral components is fairly
straightforward, the problem of separating the pure componeat spectra is more
difficult, and no vnique solution may exist. In GC-MS, a suiiable method might be
that of Biller and Biemann?3, provided that the components are sufficiently resolved
to allow the detection of maximizing groups of ions. A complementary method of
performing this task may be that which was first described by Meyerson®¢ for
separating the component mass spectra of binary mixtures and later extended by
Reed and co-workers to n components!3.25.25, In this paper, this approach is illustrated
by a simple example, the complete separation of the mass spectra of the column back-
ground (OV-101) and two components assigned the same reteation times in GC-MS.

EXPERIMENTAL

Chemicals and solvents were of analytical-reagent grade, purchased from E.
Merck (Darmstadt, G.F.R.).

Simulation of chromatographic systems

‘ The chromatographic profiles used in the simulation study were obtained by
injecting various amounts of p-cresol (1-20 ug) and recording the eluting peaks (271
nm) on chart paper (10 cm/min). The HPLC system used is desecribed below. The
curves thus obtained were superimposed and assigned the various identities and

spectra given below.

HPLC-UYV spectra simulation

The curves illustrated in Fig. 1A were made to represent an HPLC peak con-
taining three components, a, b and c. These were assigned the identities and UV
spectra (230-280 nm) of N-acetyl-p-aminophenol, phenacetin and caffeine, respec-
tively, as obtained with a Perkin-Elmer LCS5S5 detector during HPLC?. The spectra
were manually digitized at 2.5-nm intervals, giving a total of 21 wavelengths. In Fig. 1,
1-9 indicate the positions where the pump might be stopped in order to scan a
spectrum. Such a spectrum would then consist of the superimposed spectra of the
pure components in the proportions given at that position. The superimposed spectra
were calculated as previously described!® by multiplying a matrix D, containing the
peak heights of each of the three components at each of the nine positions, with a
matrix X containing the three pure component spectra (21 wavelengths), i.e.,

Myy21 = Dyys3 * X3x21 (1)

Thus, M is a 9 X 21 data matrix containing the three spectra mixed together in the
proportions given at each of the nine positions. .
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Fig. 1. Overlapping chromatographic profiles for simulation of: (A) HPLC-UV system —(a)
N-acetyl-p-aminophenol, (b) phenacetin and (c) caficine; nine positions are indicated where spectra
are recorded during stopped flow; (B) GC-MS system —(a) r-hexzane, (b) vinyl chloride and (c)
OV-101; eightecn mass spectra were recorded by repetitive scanning.

Similarly, one- and two-component data matrices were constructed by leaving
out the relevant chromatographic profiles and their corresponding spectra, e.g., for
two components:

My =D5p2* Xoun . 2

GC-MS simulation

The curves used to simulate a GC-MS peak are shown in Fig. 1B. The three
components, 2, b and ¢, were assigned the identities and mass spectra of n-hexane,
vinyl chloride?® and the major mass speciral peaks of the column background, OV-
10129, respectively. The data matrix was constructed as described above:

MMigxss = Dysxs * X3xss (3)
Thus, M in this instance is an array of 18 superimposed mass spectra containing

the three component spectra (36 mass positions) mixed together in the propomons
determined by the respective chromatographic profiles.



High-performance liquid chromatography

A Varian 8500 instrunient was employed, equipped with a reversed-phase
column (octadecylsilane on LiChrosorb, MicroPak CH-10, 25cm X 2mm D).
Cresol samples of 20 ug were injected and peaks eluted with 209 methanol in water.
The flow-rate was 50 ml/min at a pressure of 180 atm. Spectra were recorded with a
Variscan detector in the range 290-230 am at 10 nm/min. The peak obtained upon
injection of 20 ug of m-cresol, recorded at 271 nm, is shown in Fig. 2.

7
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Fig. 2. HPLC peak containing 20 ug of m-cresol together with ten positions where UV spectra were
recorded during stopped flow. Three partial spectra (290-250 nm) are shown (2, 5 and 8) together
with the comresponding solvent spectrum,(s).

At each of the ten positions indicated, the pump was stopped and spectra were
recorded on chart paper. Partial spectra (290-250 nm) 2, 5 and 8 are shown for com-
parison. The corresponding solvent spectrum is also shown, superimposed on spec-
trum 2. The spectra were then manually digitized at 2_5-nm intervals, giving extinction
values at 25 different wavelengths, i.e., 2 10 X 25 data matrix was obtained.

The corresponding peak and sample specira for a mixture of 10 ug of m-
cresol and 10 ug of p-cresol are shown in Fig. 3. Changes in the spectral pattern are
seen to occur in the centre and latter half of the peak.

Matrix rank analysis

The data matrices were transformed by the process of gaussian elimination
with pivoting™ and the transformed pivot clements (the largest elements in the matrix)
compared with their corresponding propagated errors. The number of elimination
steps required to reduce this pivot element (absolute value) to a value less than its
error determines the number of components5-7. In the present simulated data matrices,
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Fig. 3. Badly resolved HPLC peak containing 10 pg of m-cresol + 10 ug of p-cresol, together with
three of the scanned spectra.
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the error was taken to be zero. The error level necessary for experimental data was
determined empirically.

Principal cormponent analysis

The computer programme forms a covariance mairix from the data matrix
and calculates the number of eigenvalues required to account for the variance. This
number is equal to the number of underlying components®.. At this stage, no error
comparison routine has been incorporated as these may be unrcliable®? and a simpler
approach is adopted. The smaller eigenvalues then represent the system noise and
experimental error.

Computer programmes and data preparation

The present studies were performed off-line using 2 Telefunken TR440 com-
puter (University of Hamburg). Data were punched on to cards and sub-routines for
the calculation of covariance matrices and cigenvalues were kindly provided by Dr. W.
Rehpenning (University of Hamburg).

RESULTS AND DISCUSSION

HPLC-UV simulation

The computer results obtained for MRA and PCA of five different combina-
tions of N-acetyl-p-aminophenol, phenacetin and caffeine are given in Table L.

In this simple example, free of experimental errors, the determination of the
aumbers of overlapping component spectra is successful in each instance, using both
techniques. Logarithms of these eigenvalues are shown later in Fig. 4, where the
results are compared with those obtained from experimental data matrices. If the
chromatographic profiles of any of the components had been exactly overlapping
then they would not be distinguished by the programme, i.e., the spectra of the com-



binations would be proportional and only one component would be detected. In the
case of experimental data, errors due to digitization and wavelength reproducibility
may obscure such small differences in the composite spectra where the chromato-
graphic profiles nearly overlap or the spectra of the components are very similar.

TABLE1

RESULTS OF MATRIX RANK ANALYSIS (MRA) AND PRINCIPAL COMPONENTS
ANALYSIS(PCA)OFSIMULATED HPLC-UV SPECTRAL DATA MATRICES CONTAINING
UP TO THREE COMPOl\ENTS HAVING SIMILAR RETENTION BEHAVIOUR

"l{alrvc Compcnenl: L{RA pivot elements™* PCA: e.genvalues ( xIOS} ane

0 1 2 3 1 2 3 4
(a) a 11502.600 0000 — — 503219.5 0090 —
b) a+b 20708.400 11.507 0.000 — 662352.7 0500 0000 —
©) b+c 10135.750 - —174663 0000 — 274430.1 35910 0000 —
{d) a+c 12113.100 —186472 0.000 409854.8 20640 0000 —
(e} a+b3+c 21318500 —189.527 93569 O 000 492607.7 20.735 0.289 0.000

* a = N-Acetyl-p-aminophenol; b = phenacetin; ¢ = caffeine.
** Position of zero element determines number of components.
*** Position of eigenvalue in italics determines the number of components.

HPLC-UV experimental data

The extinction values measured for the first ten wavelengths of the data matrix,
M, for the one-compomnent peak (Fig. 2) are reproduced at the top of Table IT and
underneath are given the corresponding pivoted matrices obtained after one and two
gaussian eliminations, respectively. At the same time an error matrix, S, was trans-
formedS so that each element of the transformed data matrix could be compared with
its error. The results of MRA on both one-(f) and two-component(h) data matrices
are given in Table I, which also gives the corresponding values obtained after sub-
iracting the solvent spectrum: in each case, i.e., (g) and (i), respectively.

The initial error value incorporated (0.9 unit) was necessarily very large in
order to reduce the matrix to the known rank. This has also been observed by Wallace
and Katz%, who found it necessary to use inflated errors during their rank analyses of
absorption spectra. At the present stage, it appears that the only really reliable way to
study such examples is to calibrate the particular system being used with results on
pure substances and known test mixtures'?.

The PCA results for the same data matrices, (£)(i), are plotted in logaritbmic
form in Fig. 4 and compared with the logarithms of the eigenvalues (%) of the simu-
lated data matrices (a){(e) given in Table 1. If the simple criterion is adopted that the
negative values represent noise and experimental error, then the matrix (f), i.e., m-
cresol + solvent, shows up two components, one being the solvent contribution. On
subtracting the solvent spectrum, matrix {g) is obtained, kaving only one positive
eigenvzlue. In the case of matrix (h), having two cresols - solvent, the result is less
satisfactory, the third eigenvalue being slightly negative. On removal of the solvent,
matrix (i), its third eigenvalue decreases further, showing more clearly the presence of
two comporents. It should also be taken into account in this instance that the spectra
of the cresols are very similar, that they have very nearly the same retention times and
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TABLEI

PARTIAL ONE-COMPONENT SPECTRAL DATA MATRIX OBTAINED BY SCANNING
DURING STOPPEE FLOW IN HPLC, TOGETHER WITH THE CORRESPONDING
MATRICES AFTER GNE AND TWO GAUSSIAN ELIMINATION STEPS WITH PIVOTING

Pivot elements (largest absolute elements) are given in italics. These are compared with their error
tolerances in Table KL

Wave- Extinction
length
(nm)

290.0 0.25 045 0.55 0.50 0.50 0.50 0.48 040 0.30 0.25
287.5 048 095 1.20 1.20 1.20 1.20 080 0.80 0.60 049
285.0 6.85 190 295 3.00 3.10 3.00 2.i5 1.55 1.10 0.80
2825 1.55 430 71.60 8.00 8.00 7.00 5.00 3.60 3.40 1.40
2800 2.40 705 1140 13.15 13.05 11.25 8.60 6.10 3.85 2.15
2715 . 2.88 8.08 12.86 16.10 15.70 13.28 10.20 1.50 4.55 2.58
2750 3.00 8.35 13.30 1650 1605 13.65 10.50 1.76 4.67 2.70
2725 4.15 9.75 15.35 18.50 1800 1565 12.10 9.00 6.00 3.50
2700 - 462 1025 15.15 1890 18.15 15.65 12.65 9.80 6.50 4.33
267.5 430 9205 13.30 16.80 16.50 13.80 11.26 8.80 6.00 4.10

- - - - - - - - - - -

Afterone 00 0.0 0.0 0.0 00 00 0.0 00 0.0 0.0

step 9.0 —2.38 1.39 -2.i4 -—C.o4 062 —103 ~—181 —1.84 —149
0.0 0.11 0.54 0.11 0.21 051 0.14 -0.01 0.06 0.27
0.0 —043 1.18 —040 0351 037 —-035 —-0354 064 —003

00 —0.86 0.85 —0.381 0.42 036 —020 —0.71 —0.67 —008
00 —110 -—004 -—105 023 —005 —-057 684 —098 —0.65
00 —108 007 -—1.03 020 —001 —-054 —085 —1.00 —G59
00 —0.73 0.52 —0.37 0.23 033 —028 —059 —036 —028
0.0 0.13 0.14 0.12 0.02 0.08 0.14 0.14 012. 017
0.0 025 —0.16 0.19 036 —0.1i —001 0.08 022 —006

After two 00 0.0 0.0 00 00 0.0 0.0 0.0 0.0 00

steps 00 0.0 0.0 0.0 00 00 . 00 0.0 00 0.0
0.0 00 098 —0.01 043 026 -—0.16 —0.21 0.93 0.23
0.0 00 —0.01 0.01 0.18 0.54 009  =0.09 0.61 0.20
00 00 —0.00 —0.03 0.65 0.13 0.17 006 ~ 035 046
0.0 00 —0.12 —0.05 053 —03¢ —009 —000 -—0.59 0.04
00 00 016 —005 049 —-029 —007 -—003 -—0.56 0.08
0.0 0.0 0.21 0.29 043 0.13 003 —003 0.08 0.18
0.0 0.0 0.02 001 —001 0.12 0.08 0.03 0.22 0.09
0.0 0.0 002 —003 029 -—-004 -—-015 —010 -—001 —0.21

that the solvent spectium is rclatively insigaificant. On this basis, plois such as Fig. 4
could give a fair indication of the purity of HPLC and other chromatographic peaks.
This approach is then a generalization of the absorbance-ratio method of investigating
peak purity®, the latter being a particularly important consideration in guantitative
work or where sample size is severely limited. In this instance, no decision has to be
made concerning the two or three wavelengths to be chosen for ratioing so that the
technique can be readily automated.
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TABLE III
MATRIX RANK ANALYSIS OF SOME HPLC-UV SPECTRAL DATA MATRICES
Error lzvels in the transformed elements are given in parenthms.

Marrix Contents Pivat elements and errars Number of .
componernts
Sitep O Step 1 Step 2 Step 3 -
&) m-Cresol 18.900 —2.380 0.9385 - 2
- (0.900) (1.152) (1.320) —
) m-Cresol 17.400 —1.172 — — 1
less solvent (0.900) (1.176) — —
(h) m-Cresol, 15.300 3.539 1.349 0.929 3
p-cresol (0900) {1.261) (1.225) (2.251)
) m-Cresol, 15.300 2.530 1.331 — 2
p-cresol (0.900) {1.403) (1.436) —
less solvent

These powerful techniques, MRA and PCA, are potentially useful for deter-
mining the purity of chromatographic peaks. The methods require that the profiles of
the components do not exactly overlap within the peak, that they have significantly
different spectral patterns and, if n components are present, then at least » -+ 1 spectra
must te recorded containing the component spectra in different proportions. No prior
knowledge of the pure component spectral patterns is required and the techniques are
not dependent on peak shape analysis and the detection of maxima, so that, e.g., filter
changes can be made during spectrum recording, as in the present experiments, or the
signal amplification can be altered between scans.

Extraction of the pure component spectra from the raw data matrix
Calculation of the totally unknown component spectra is difficult and may be
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] L e ®
=
=
] ° e °
= Py . A A a a
logh o A ~ - a
A A R -
: £laj2]a
—s,_:' PY Y ° . . a
-1
@0 )@} OB EEC NG

Fig. 4. Plots of logarithms of eigenvalues (4) of simulated, (a)(c), and experimental, (£)-(i), HPLC-
UV data matrices: (a) N-acetyl-p-aminophenol; (b) N-acetyl-p-aminophenol -+ phenacetin; (c)
phenacetin 4 caffeine; (d) N-acetyl-p-aminophenol + caffeine; (¢) all three compounds; (f) m-
cresol; () m-cresol Iess solvent spectrum; (k) m-cresol + p-cresol; (i) mecresol + p-cresol less solvent
spectrum. - :
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impossible. The following investigation illustrates a possible approach to this problem.
The data matrix of overlapping spectra, M (the only experimental information), is the
product of the matrices D, the amounts and retention data of the components within
the peak, and X, the component spectral patterns. When nothing is known about D
or X, an infinite number of possible solutions for X exist. However, factor analysis, as
" described above, provides the number of spectra in X so that the dimensions of D and
X become known. The further pattern separation of the component spectra has been
studied by Ainsworth’ and Lawton and Sylvestre!! for binary absorption spectra, and
by Meyerson** for binary mass spectra. The latter technique has been extended to n
components by Reed and co-workers®>-?5, resulting in the UNRAVL programme?®®.
Such techniques depend on the detection of wavelengths or m/e values to which in-
dividual component spectra do not contribute or coniribute uniquely. Such situations
are more commonly encountered with mass spectra than with absorption spectra.
The application of part of the UNRAVL programme will be illustrated by a simple
example of simulated GC-MS data, constructed as described under Experimental.

Examination of the raw data matrix

The 18 (spectra) X 36 (masses) data matrix was first analysed by factor anal-
ysis using the methods described above, and three independent components were un-
ambiguously determined. Thus, the dimensions of the unknown D and X matrices are
known, i.e., as in egn. 3. The object was then to calculate X.

The next step was to subject the data matrix to a correlation analysis whers the
rows (spectra) were correlated giving an 18 X 18 correlation matrix (i), and the
columns were correlated giving a 36 X 36 matrix (ii), containing the correlation co-
efficients of the 36 mass profiles. Such a procedure has been shown to provide useful
information about the fractionation taking place across the chromatographic peak
itself'?, matrix (i) and the relationships between the components present within the
peak?, matrix (ii). Selected columns of the correlation matrix (ii) for the present
data matrix are shown in Table IV.

The columns contain the correlation coefiicients of the profiles of the ions of
mfe 207, 86 and 62, respectively, with all other ions. It is apparent from the first
column that mje 207 correlates highly with masses 191, 177, 147, 133, 96, 83 and 73,
as they are non-overlapping background peaks. By examination of the whole correla-
tion matrix in this way, it was possible to extract three clusters of highly correlating
mass profiles, indicating uniqueness to each of the three unknown componenis.
Because these groups of peaks are unique to eack of the components, the corresponding
columns (masses) of the matrices M and the unknown X are also unique to each
component. Once the uni-component peaks for each component have beenr deter-
mined, the procedure is basically the same as previously described!*:?>, In this instance,

simultaneous equations are formed from relevant parts of egn. 4:
Osx3* M'5036 = Xs3a @

0 is an unknown matrix (to be determined) which operates on a matrix M’ to yield
the required component specira, X. M is formed by selecting three (as there are three
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TABLE IV.

GC-MS DATA SET
Comlauonsofmcselectedmassswztnauothersa:ehsted Chstetsa:egrmmxtah@s.

mfe 207 86 62

207 1.0000 —0.5714 —0.4903
191 1.0600 —05714 —0.4903
177 1.6600 —0.5714 —0.4903
147 1.0000 —0.5714 —0.4903
133 1.0000 —0.5714 —0.4903
95 1.0000 —0.5714 —0.4903
87 —05714 1.:000 0.9919
86 —0.5714 1.0000 0.9919
&8s —0.5714 1.0000 09919
&4 —0.5714 1.0000 - 0.9919
83 1.0000 —0.5714 —0.4903
73 21,0060 ~0.5714 —0.4903
72 —0.57i4 1.0000 0.9919
71 —0.5714 1.0000 0.9920
70 —0.5714 1.0000 0.9919
69 —0.5714 2.0000 09919
65 —0.4903 0.9919 1.00060
64 —0.4903 0.9919 1.0009
63 —0.4903 0.9919 1.0660
62 —0.4903 0.9519 1.0000
61 —0.49¢3 0.9919 1.0000
60 —0.4903 0.9919 1.0000
59 —0.3871 0.9742 0.9934
58 —0.5714 1.0000 0.9919
57 —0.5713 1.0000 0.5920
56 -—0.5714 1.0000 0.9919
55 —0.5707 1.0000 0.9520
b —0.5714 1.0000 0.9919
53 —0.5714 1.0000 0.9919
50 —0.4903 09519 1.0000
49 —0.4903 0.9919 1.0000
48 —0.4903 0.9919 1.0000
47 —0.4903 0.9919 1.0000
44 —0.5649 0.9999 0.9931
43 —0.5713 1.9000 0.9920
42 —0.5714 1.0000 0.9919

5. M. HALKET

‘SOME SELECTED COLUMNS OF THE MASS PROFILE CORRELATION MATRD{ OF A

components) representative spectra of mixtures from M, the complete data matrix.
Egn. 4 may be written more fully:

a a a3

By B: Bs
71 V2 73

M, M, Mj;.... M,
My My .ooion....

M. 31

M32 .........

MZn
AIS-:

Xu
Xn
X1

X2 X3 .o Xym

An example of a possible simultaneous equation in this instance is ega. 6:

o, My, + aM;, + as”sx = X

&)

)
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Three such equations as eqn. 6 would be necessary to determine «;, o, and «;, and
hence the matrix X, via eqn. 5. If, in egns. 5 and 6, X, and X,, are zero because the
first coiemn of X is unique to another component, e.g., where Xj; is non-zero, i.e.,isa
unique peak, then eqn. 6 becomes

@ My +a, My + a5 My;=0 . @
or o

oy My +a M, =M, ®
TABLE V

MATRIX OF SELECTED MULTI-COMPONENT MASS SPECTRA IN GC-MS (M’). THE
ACTUAL PURE COMPONENT SPECTRA (X) AND THE SPECTRA CALCULATED BY THE
UNRAVL PROGRAMME

Spectra X and calculated, are given in normalized form.

mfe M X Calculated spectra

207 101.0 1036 1060 100.0 090 0.0 100.0 0.0 00

191 1G.1 10.3 10.6 100 00 0.0 100 09 . 00

177 202 20.6 212 200 0.0 00 20.0 0.0 0.0

147 10.1 103 10.6 10.0 0.0 0.0 100 0.0 00

133 121 124 12.7 120 0.0 00 120 00 0.0
96 11.1 11.3 11.7 110 0.0 0.0 i1.0 006 0.0
87 19.0 10.6 24 00 1.0 0.0 0.0 1.0 0.0
86 204.5 164.3 3722 0.0 155 0.0 00 15.5 00
8s 7.6 42 1.0 0.0 04 0.0 00 04 0.0
84 19 1.1 0.2 00 0.1 9.0 00 0.1 00
83 16.2 16.5 170 16.0 0.0 0.0 16.0 00 0.0
73 45.5 464 417 45.0 co 0.0 450 0.0 0.0
72 5.7 3.2 0.7 0.0 0.3 0.0 0.0 0.3 Q.0
71 96.0 540 131 1.0 5.0 0.0 10 5.0 0.0
70 133 74 1.7 0.0 0.7 0.0 0.0 0.7 0.0
69 5.7 32 0.7 00 0.3 0.0 0.0 03 00
65 35 2.1 04 0.0 00 0.7 0.0 00 07
64 153.5 91.5 155 0.0 0.0 310 00 0.0 3i.0
63 49 24 04 0.0 00 0.3 0.0 0.0 0.8
62 . 4950 2650 500 00 00 1000 00 00 1000
61 4.1 263 4.5 0.0 0.0 8.9 00 00 8.9
60 50 30 0.5 0.0 00 10 00 00 1.0
59 4.5 4.5 33 3.0 0.0 0.3 3.0 0.0 0.3
58 1.6 4.2 1.0 0.0 04 0.0 0.0 04 0.0
57 1905.1 1065.2 2453 50 1000 00 50 1000 (1Y
56 860.7 480.2 108.7 9.0 45.3 0.0 0.0 45.3 0.0
55 - 1274 720 190 20 6.6 - 00 20 6.6 0.0
52 1i4 64 14 0.0 0.6 00 0.0 0.6 00
53 . 323 i8.0 4.1 0.0 1.7 0.0 00 1.7 00
50 40 24 04 0.0 0.9 0.8 00 0.0 038
49 94 5.6 10 00. 00 19 00 00 19
48 - . 114 6.8 12 00 0.0 23 0.0 00 23
47 26.7 159 2.7 00 0.0 54 00 090 54
44 56.8 330 94 2.5 27 0.6 25 27 0.6
43 15453 863.3 197.5 2s 812 00 25 81.2 00

42 777.1 433.5 98.2 0.0 409 0.0 0.0 409 0.0
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where a; may be set equal to —1, as the set of such equations is homogeneous. Now,
only two such equations are necessary to determine ¢, and a, and therefore the first
row of matrix @ and hence the first row of X. If one uni-component peak can be
detected for each of the three components, then two equations such as eqgn. 8 can
immediately be set up for each component and hence O and X determined directly'>.
This task is performed by the computer programme, and the derived spectra are
prianted out. In the preseni experiment, masses 207, 86 and 62 were fed to UNRAVL
and the following O matrix was calculated:

—123 224 —1.00 ®)

—099 200 —1.00

0.50 —0.66 —1.00
| |

The matrix M’ used in this instance is given m Table V together with the actual

matrix X and the calculated spectra.
In this simple example, free of experimental error and noise, the calculated

spectra are th2 same as the component spectra hidden in M. The programme has
 worked in practice where a four-component mixture, fractionated within the mass
spectrometer, was analysed®. The same principles apply to n components, provided
that at least onc uni-component peak can be detected per component. Under certain
circumstances, this condition may be relaxed?s.

CONCLUSION

Factor analysis shows potential for determining the content and purity of
chromazatographic-spectrometric systems, provided that the specira are linearly
additive, e.g., HPLC-UV by scanning during the stopped flow.

A further step in such matrix manipulation techniques allows the pattern
separation of the pure component specira to be carried out, provided that certain
simple conditions are satisfied.

It is apparent that in the case of real data, experimental errors and instrumental
noise will make the application of these techniques more difiicult, especially when
dealing with very badly resolved peaks. Development of UNRAVL is continuing,
including an investigation of the effects of simulated experimental errors, and its
adaptation for more efficient handling of real data.
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