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SUMMARY 

Factor analysis and other matrix manipulatiosz techniques are applied to some 
data arrays obtained by successive scanning in two ckromatograpkic-spectrometric 
systems: high-performance liquid ckromatograpky-uItravioIet (HPLC-UV) and gas 
chromatography-mass spectrometry @C-MS), tke formes containing both real and 
simulated data and the latter simuIated data only. In all muiti-component cases 
considered, tke substances are assigned identical retention bekaviour, or have very 
nearIy tke same experimental retention t&nes. En the HPLC system, the metkod is a 
generalization of the absorbance-ratio technique for tke determination of peak purity 
wkere no choice of suitable wavelengths need be made. Factor analysis reveals the 
number of kidden components and, in a three-component GC-MS example, a computer 
pro-e (fMRAVL) is employed to extract the pure component mass spectra. 

-0DUCTXON 

Factor analysis, in the form of matrix ra& analysis (MRA) has found a Iarge 
number of chemical applications, particularly for tke calculation of the number of 
overIapping components in arrays of fluorescence and absorption spectral-‘_ A simiIa.~ 
technique, principaI components anaIysis (PCA)*, has also been applied to tke analysis 
of arrays of overlapping absorption spec~~&~. Monteiro and Reed= used MRA to 
CaicuIate the number of overlapping components in a mass spectml data array and 
PCA was applied by Davis ei a1.14 to the spectra of binary mixtures obtained by gas 
chromatography-mass spectrometry (GC-MS). Ritter et QZ.‘~ also used PCA success- 
My to calculate the nun&+z of components in sevezz mass spectra of mixtures. 
Both techniques. MRA and PCA were employed by Ha&et and Reed to analyse mass 
spectnl data arrays obtained by s canning during direct probe evaporation16-17. More 
recentIy, MRA and PCA have been employed to investigate steroid mass spectra of 
liquid chromatograpkic fractions containing up to four componentsls, repetitively 
scanned sterol W-MS d&P and also some simuIated data matrices obtained by 
successiveIy scannin g W spectra across a k&k-performance liquid chromatographic 
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(HPLc)r peak cmmining up to four components z” other chromatographic applica- _ 
tions of factor analysis, but not involving spectra, include a study of retention data*’ 
and peak shapes=. 

In this paper, factor anaIysis is applied to several simulated HPLC data arrays 
containing up to three components having the same retention characteristics but 
present in difbzent amounts. In addition two actual examples of scanning W 
spectra across HPLC peaks after stopping the pump are presented. 

AJthough the determination of the number of spectral components is fairly 
straightforward, the problem of separatin, 0 the pure component spectra is more 
difficult, and no unique solution may exist. In GC-MS, a suitable method might be 
that of Biller and Biernan@, provided that the components are sufhcientiy resolved 
to allow the detection of maximi& g groups of ions. A complementary method of 
perfo_rming this task may be that which was first described by Meyerson” for 
separating the component mass spectra of binary mixtmes and later extended by 
Reed and co-workers to n components n*25@. In this paper, this approach is i&&rated 
by a simple exampIe, the complete separation of the mass spectra of the cohunn back- 
ground (QV-101) and two components assigned the same reteation times in GC-MS. 

ChemicaIs and solvents were of analytical-reagent grade, purchased from E. 
Merck (Darmstadt, G.F.R.). 

SimrclaZion of chromatograpfzic sysfenr3 
The tihromatographic profiles used in the simulation study were obtained by 

injecting various amounts of pcresol (l-20 pg) and recording the eluting peaks (271 
run) on chart paper (10 cm/min). The HPLC system used is described below. The 
curves thus ob&u&red were superimposed and assigned the various identities and 
spectra given below. 

WPLC- U V spectra simulation 
The curves illustrated in Fig. 1A were made to represent an HPLC peak con- 

taining three components, a, b and c. These were assigned the identities and W 
spectra (230-280 MI) of N-acetyi-p-aminophenol, phenaaztin and caffeine, respec- 
tively, as obtained with a Perk&Elmer LC55 detector during HPLC*‘. The spectra 
were mamually digitized at 25nm intervals, giving a total of 21 wavelengths. In Fig. 1, 
l-9 indicate the positions where the pump might be stopped in order to scan a 
spectrum. Such a spectrum would then consist of the superimposed spectra of the 
pure components in the _proportions given at that position. The superimposed spectra 
were calculated as previously descriils by multiplying a matrix D, containing the 
peak heights of each of the three components at each of the nine positions, with a 
matrix Xcontaining the three pure component spectra (21 wavelen,$hs)), i-s., 

Thus, M is a 9 X 21 data matrix containing the three spectra mixed together in the 
proportions given at each of the nine positions. 
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Fig. 1. Overlapping chromatogcapbic profiles for simulation of: (A) KPLC-UV system -_(a) 
N-ace&p-aminophenol, (b) phenacetin and (c) &eine; nine positions are indicated where spectra 
ase secorded during stopped flow; 03) GC-MS system-(a) n-hexane, (b) vinyl chloride and (c) 
OV-101; eighteen mass spectra were recorded by repetitive scam&. 

Similarly, one- and two-component data matrices were constructed by leaving 
out the relevant chromatographic profiles and their corresponding spectra, e.g., for 
two components : 

M 9x21= D 9x2 l x2x2x (2) 

The curves used to simulate a GC-MS peak are shown in Fig. 1B. The three 
components, a, b and c, were assigned the identities and mass spectra of n-hexane, 
vinyl chloride28 and the major mass spectral peaks of the column background, OV- 
lOl=, respectively. The data matrix was con&u&d as described above: 

(3) 

Thus, IU in this instance is an array of 18 superimposed mass spectra containing 
the three component spectra (36 mass positions) mixed together in the proportions 
determined by the respective chromatographic proEles. 
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High-pe~ormance liquid chronography 
A Varian 8500 ktrument was employed, equipped with a reversed-phase 

cohnnn (octa.decyIsikme on khrosorb, MicroPak CH-10, 25 cm x 2 mm1.D.). 
Cresol samples of 20 pg wexe injected and peaks elute+ with 20 % methanol in Water. 
The Bow-rate was SG ml/min at a pressure of 180 atm. Spectra were recorded with a 
Variscan detector in the range 290-230 nm at 10 nmjmin. The peak obtainea upon 
injection of 2Opg of m+xesol, recorded at 271 nm, is shown in Fig. 2. 

4 

3 

2. 

1W 

- 

Fig. 2 -= peak cmtaining 20 pg of McresO I together with ten positions where W spectra were 

recorded during sto~pzd flow. Three partial 
with the ccmes~nding solvent speurum,(s). 

spezha (290-250 nm) are show (2, 5 and 8) together 

At each of the ten positions indicated, the pump was stopped and spectra were 
recorded on chart paper. Partial spectra (290-250 nm) 2,s and 8 a.re shown for com- 
parison. The coixesponding solvent qectrum is also shown, superimposed on spec- 
trum 2. The spectra were then manually digitized at 25nm intervals, giving extinction 
values at 25 different wavelengths, i.e., a 10 x 2.5 data matrix was obt+med. 

The corresponding peak and sample spectra for a mixture of 1Opg of m- 
cresol and IO pg of p-cresol are showu iu Fig. 3_ Changes in the spectral pattern are 
seen to occur in the ceutre and latter half of the peak. 

‘lk data matrices were transformed by the process of gaussian elimination 
witi pivoting30 and the transformed pivot elements (the largest elements in the matrix) 
compared with their cm-responding propagated errors. The nnnzber of eJ.imination 
steps required to reduce this pivot element (absolute value) to a due fess than 2s 
error determines the number of components 5J7. In the present simukted data matrices, 
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Fig. 3. Badly resolved EIPLC peak containing 1Opg of rncresol f 1Opg of p-cresol, together with 
three of the scana& spectra. 

the error was taken to be zero. The error IeveI necessary for experimental data was 
determined empirically. 

Principal component analysis 

The computer programme forms a covariance matrix from the data matrix 
and cakuMes the number of eigenvaks required to account for the variance. ‘Ibis 
number is equal to the number of underlying components31. At this stage, no error 
corn-on routine has been incorporated as these may be unreliable32 and a simpler 
approach is adopted. The smaller eigenvalues then represent the system noise and 
experimental error. 

Computer programmes and data prepuration 
The present studies were performed off-line using a Telefimken TR440 com- 

puter (University of Hamburg). Data were punched on to cards and sub-routines for 
the calculation of covariance matrices and eigenvalues were kindly provided by Dr. W- 
Rehpenning (University of IIamburg). 

RESULTS AND DISCUSSION 

The computer results obtained for MRA and PCA of 6ve different combina- 
tions of N-acetyl-p-aminophenol, phenacetin and caffeine are given in Table I. 

In this simple example, free of experimental errors, the determination of the 
numbers of overlapping component spectra is successful in each instance, using both 
techniques. Logarithms of these eigenvalues are shown later in Fig. 4, where the 
results are compared with those obtained from experimental data matrices. If the 
chromatographic profiles of any of the components bad been exactly overlapping 
then they would not be distinguished by the programme, i.e., the spectra of the com- 
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binations would be proportional and only one component would be detected. In the 
case of experimental data, errors due to digitization and wavelength reprodueibihty 
may obscure such small differences in the composite spectra where the chromato- 
graphic profiles nearly overlap or the spectra of the components are very similar. 

TABLE I 

RESULTS OF MATRIX RANFL ANALYSIS (IMRA) AND PRINCIPAL COMPONENTS 
ANALYSlS(PCA)OFSIMULATEDHPLC-UVSPE- DATA MATRICES CONTAINING 
UP TO THREE COMPONENTS HAVING SIMILAR RETENTION BEH.AVIOUR 

Matrix Cotnponents’ MRA: pivot elemerrts” PCA.- eigemahes ( x ZO-‘) l ** 

0 I 2 3 I 2 3 .4 

(a) 2 1150zJxlO o.ooo - - 503219.5 O.OOO - 
(b) atb 20708.400 11.907 o.oao - 662352.7 O.!m OmQ - 
(c) b+c 10135.750 . -174.663 o.aOo - 274430-l 3.5910 0.000 - 
(d) 

: ; : 
12113.100 - 186.472 0.000 - 409854.8 to.640 o.cOO - 

&I + c 21318.!JOO -189.527 9.569 0.000 M2CiO7.7 20.735 0.289 O_OOO 

* a = N-Acety!-p-aminophenol; b = phenacetin; c = caffeine. 
l * Position of zero element determines number of components. 

*** Position of eigenvalue in italics determines the number of components. 

HPLC-UV experimental data 

The extinction values measured for the first ten wavelengths of the data matrix, 
M, fer the one-component peak (Fig. 2) are reproduced at the top of Table II and 
underneath are given the corresponding pivoted matrices obtained after one and two 
gaussian eliminations, respectively. At the same time an error matrix, S, was trans- 
formed6 so that each element of the transformed data matrix could be compared with 
its error. The results of MRA on both one-(f) and two-component(h) data matrices 
are given in Table III, which also gives the corresponding values obtained after suh- 
.mcting the solvent spectrum in each case, Le., (g) and (i), respectively. 

The initial error value incorporated (0.9 unit) was necessarily very large in 
order to reduce the matrix to the known rank. This has also heen observed by Wallace 
and I&&, who found it necessary to use in8lated errors during their rank analyses of 
absorption spectra. At the present stage, it appears that the only really reliable way to 
study such examples is to calibrate *he particular system being used with results on 
pure substances and known test mixture~~~. 

The PCA results for the same data matrices, (f)-(i), are plotted in logarithmic 
form in Fig. 4 and compared with the logarithms of the eigenvahres (A) of the simu- 
lated data matrices (a)-(e) given in Table 1. If the simple criterion is adopted that the 
negative values represent noise and experimental error, then the matrix Q, i.e., m- 
cresol i solvent, shows up two components, one being the solvent contribution. On 
subtracting the solvent spectrum, matrix (g) is obtained, having only one positive 
eigeuvalue. In the ease of matrix (h), having two cresols + solvent, the result is Iess 
satisfactory, the third eigenvalue being slightly negative. On removal of the solvent, 
matrix (i), its third eigenvalue decmases further, showing more clearly the presence of 
two components. It should also be taken into account in this instancxz that the spectra 
of the cresols are very similar, that they have very nearly the same retention times and 
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TABLE Ir 

PARTIAL ONE-COMPONENT SPEtXEtAL DATA MATRIX OB-IMIUED BY SCANNING 
DURING S-FOPPEC FLOW IN HPLC, TOGETHER WITH- THE CORRESPONDING 
MATRrcEsAJxER (iNE AND TWO GAUSSrAN EJXMENATION STEPS WITH PIVOTING 
Pivot elements (largest absolute elements) are given in italics. These 2x-e compared with ffieir error 
tolerances in Table III. 

290.0 0.2s 
287.5 0.48 
285.0 0.85 
282.5 1.55 
280.0 2.40 
277.5 2.88 
275.0 3.00 
272.5 4.15 
270.0 4.62 
267.5 4.30 

. 

. 
A&x one 0.0 
step 0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

After two 0.0 
steps 0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

. 

0.45 
0.95 
1.90 
4.30 
7.05 
8.08 
8.35 
9.75 

10.25 
9.0s 

0.0 
-2-38 

0.11 
-0.43 
-o-a6 
-1.10 
-1.08 
-0.73 

0.13 
0.25 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
o-0 
0.0 

. 

0.55 0.50 
1.20 1.20 
2.95 3.00 
7.60 s.CC 

11.40 13.15 
1286 16.10 
13.30 16.50 
15.35 18.50 
15.15 18.90 
13.30 16.80 

0.0 0.0 0.0 0.0 
1.39 -2.14 -Cd4 0.62 
0.54 0.11 0.21 0.51 
1.18 -0.40 0.31 0.37 
0.85 -O.Sl 0.42 0.36 

-0B4 -1.05 0.23 -0.05 
0.07 -1.03 0.20 -0.01 
0.52 -0.37 0.23 0.33 
0.14 0.12 0.02 0.08 

-0.16 0.19 0.36 -0.li 

0.0 0.0 
0.0 0.0 
098 -0.01 

-0.01 0.01 
-0.00 -0.03 
-0.12 -0.05 
-0.16 -0.05 

0.21 0.29 
0.02 0.01 
0.02 -0_03 

0.50 0.50 0.48 0.40 0.30 025 
1.20 1.20 0.90 0.80 0.60 0.49 
3.10 3.00 2.1s 1.55 1.10 0.80 
S.CO 7.00 5.00 3.60 3.40 1.40 

13.05 112S 8.60 6.10 3.85 2.15 
15.70 13.28 10.20 7.50 4.55 2.58 
16.02 13.65 10.50 7.70 4.67 2.70 
18_CO 15.65 12.10 9.00 6.00 3.50 
18.15 15.65 12.65 9.80 6.50 4.33 
16.50 13.80 11.20 53.50 6.00 4.10 

. 

0.0 
-1.03 

0.14 
-0.35 
-0.20 
-0.57 
-0.54 
-0.28 

0.14 
-0.01 

0.0 0.0 0.0 
-1.81 -1.84 -1.49 
-0.01 0.06 0.27 
-0.54 O.fS -0.03 
-0.71 -0.67 -0.0s 
-0.w -0.98 -0.65 
-0.85 -l.Co -G-S9 
-0.59 -0.36 -0.28 

0.14 0.12 . 0.17 
0.08 0.22 -0.06 

0.0 
0.0 
0.43 
0.18 
0.65 
0.53 
0.49 
0.43 

-0.01 
0.29 

. 

0.0 
0.0 
0.26 
0.54 
0.13 

-0.34 
-0.29 

0.13 
0.12 

-0.04 

0.0 

-:::6 
0.09 
0.17 

-0.C9 
-0.07 

0.03 
0.08 

-0.15 

0.0 0.0 
0.0 0.0 

-0.21 0.93 
-I-O_09 0.61 
-0.06 0.35 
-0.00 -0.69 
-0.03 -0.56 
-0.03 0.08 

O-03 0.22 
-0.10 -0.01 

. 
0.0 
0.0 
0.23 
02C 
0.46 
0.04 
0.0s 
0.18 
0.09 

-0.21 

that the solvent spectrum is relatively insignif%ant. On this basis, plots such as Fig. 4 
could give a fair idication of the purity of HPLC and other chromatographic peaks. 
This approach is then a generalization of the absorbance-ratio method of investigating 
peak puriyU, the latter being a particularly important consideration in quantitative 
work or where sample size is severely limited. %I this instance, no decision has to be 
made co~cemin gthetwo orthreewavek~gths tobe chosenforratioingso that the 
technique can be readily automated. 
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TABLEIII 

MATRIX RANEC ANALY!GS OF SOME HPLC-W SPECTRAL DATA h&ATRKES 
Error I=vels in the trallsformed elemtnts are given in parenthese5. 

Marrir c0nrenrs Pivot ekmtws and mars Nrrmber of 

SZepO step2 s-rep 2 srep 3 =wm 

ir) m-<xesol 18.900 -2.380 0985 - 2 
(0.9w (1.152) (1.320) - 

(I& m_cLeso! i7_4m -1.172 - 1 
less solvent (osoo) (1.176) - = 

0.0 mcresol. 15.300 3539 1.349 0929 3 
paesol (o900) (1261) (l-2=) (2.251) 

(i) d==JZ 15.300 2.530 1.331 - 2 
paesol (Osao) (1.403) (1.436) - 
less so1vent 

These powmful techniques, MRA and PCA, are potentially useN for deter- 
mining the purity of chromatographic peak The methods require that the pro&s of 
the components do not exactly overlap within the peak, that they have signifkantIy 
different spectral patterns and, ifn components are present, then at least R f 1 spectra 
must be recorded containing the component spectra in Merent proportions. No prior 
knowledge of the pure component spectral patterns is required and the techniques are 
not dependent on pezk shape analysis and the detection of maxima, so that, e.g., filter 
changes can he made during spectrum recording, as in the present experiments, or ffie 
signal amplification can he altered between scans, 

Extraction of the pure component spectra from the raw &a matrix 

Calculation of the totally unknown component spectra is difficult and may he 

. 
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Fig. A Plots of logarithms of eigenvabs (A) of simofa*~ (a)-(e), and experkxntal, (f)-(i), HPLC- 
UV data matrices: (a) N-z&&paminophenol; (b) N-acety@-zuniuophenol -i- phena.ceti; (c) 
phenacetin f c&Seine; (d) N-l-p-amiuophenol -#- c&T&e; (e) all three compou.uds; (f) m- 
==oI; (6) -1 Icss SoIvent specmm; (h) -1 f pcresol; (r) i?wxesol i- JJ-cxsol ks sohrcnt 
spcctnua 
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impossible. The following investigation illustrates a possible approach to this problem. 
The data matrix of overlapping spectra, A$ (the only experimental information), is the 
product of the matrices D, the amonnts and retention data of the components within 
the peak, and X, the component spectral patterns. When nothing is known about D 
or X, an in&rite number of possible solutions for X exist. However, factor analysis, as 
described above, provides the number of spectra in X so that the dimensions of D and 
X become known. The further pattern separation of the component spectra has been 
studied by Ainsworths and Lawton and Sylvestrelx for binary absorption spectra, and 
by Meyerson** for binary mass spectra. The latter technique has been extended to n 
components by Reed and co-worlsers13~25, resulting in the UNRAVL programmez6. 
Such techniques depend on the detection of wavelengths or m!e values to which in- 
dividual component spectra do not contribute or contribute uniquely. Such situations 
are more commonly encountered with mass spectra than with absorption spectra. 
The application of part of the UNRAVL programme will be illustrated by a simple 
example of simulated GC-MS data, constructed as described under Experiment& 

Examination of the rmv data matrix 

The 18 (spectra) x 36 (masses) data matrix was first analysed by factor anal- 
ysis using the methods described above, and three independent components were un- 
ambiguously determined. Thus, the dimensions of the unknown D and X matrices are 
known, i.e., as in eqn. 3. The object was then to calculate X. 

The next step was to subject the data matrix to a correlation analysis where *he 
rows (spectra) were correlated givin g an 18 x 18 correlation matrix (i), and the 
colnnms were correlated giving a 36 x 36 matrix (ii), containing the correlation co- 
efficients of the 36 mass profiles. Such a procedure has been shown to provide useful 
information about the fractionation taking place across the chromatographic peak 
itself”, matrix (i) and the relationships between the components present within the 
peakz5, matrix (ii). Selected cohmms of the correlation matrix (ii) for the present 
data matrix are shown in Table IV. 

The columns contain the correlation coef&ients of the protiles of the ions- of 
m/e 207, 86 and 62, respectively, with all other ions. It is apparent from the first 
column that m/e 207 correlates hi_&ly with masses 191, 177,147, 133,96,83 and 73, 
as they are non-overlapping background peaks. By examination of the whole correla- 
tion matrix in this way, it was possible to extract three clusters of highly correlating 
mass profiles, indicating uniqueness to each of the three unkuowu components. 
Because these groups of peaks are unique to each of the components, the corresponding 
columns (masses) of the matrices M and the unknowu X are also unique to each 
component. Once the uni-component peaks for each component have been deter- 
mined, the procedure is basically the same as previously described13~25. In this instance, 
simultaneous equations are formed from relevant parts of eqn. 4: 

Q 3x3 * M;x36 = &x36 

Q is an unknown matrix (to be determined) which operates on a matrix M’ to yield 
the requked component spectra, X. W is formed by selecting three (as there are three 
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207 
191 
177 
147 
133 
96 
87 
86 
85 
84 
83 
73 
72 
71 

E 
65 
64 

zi 
61 
60 
59 
58 
57 

z 
SQ 
53 

iz 
48 
47 
44 
43 
42 

I.anm 
Lo&Ml 
I.&m 
1.m 
1.m 
llMo0 

-05714 
-0.5714 
-a5714 
-0.5714 

I.lxnw 
z.mlo 

-0.5714 
-05714 
-0_5714 
-05714 
-0.4903 
-0.4903 
-0.4903 
-0-4903 
-0_4!x3 
-0_49m 
-0.3871 
-05714 
-0.5713 
-0.5714 
-0.5707 
-0.5714 
-0.5714 
-0.4903 
-0.4903 
-0.4903 
-0.4903 
-0_5649 
-05713 
-0.5714 

-057L4 
-05714 
-0.5714 
-0.5714 
-0.5714 
-0_57L4 

1_~ 
1_&Mo 
Iaooo 
I.c#wx) 

-05714 
-0.5714 

I.am 
I.ooGo 
1.imm 
Imtw 
0.9919 
0.9919 
0.9919 
09919 
0.9919 
0.9919 
0.9742 
IJxm 
1.m 

I’E 
I.OtXH 
1.m 
09919 
0.9919 
0.9919 
09919 
0.9999 
1.suw 
1Lm.M 

-0.4903 
-0.4903 
-0.4903 
-0_4903 
-0.4903 
-0.4903 

o-9919 
0.9919 
02919 
0.9919 

-0-4903 
-0.4903 

0.9919 
0.9920 
0.9919 
09919 
l.am 
1.m 
IloGw 
I.#m 
Idam 
1.m 
03934 
0.9919 
0.9920 
03919 
03920 
02919 
0.9919 
I.owo 
Imoo 
x.ooLIo 
mwo 
09931 
03920 
O-9919 

components) representative spectra of mixtures Corn M, the complete data matrix. 
Eqn. 4 may be written more fidly: 

An example of a possible simdtiwus equation in this instance is eqn. 6: 
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Three such equations as eip. 6.would be necesq to determine (z~, cxz and czs, and 
hence the matrix X, via eqn. 5. If, in ecp. 5 and 6, Xl, and X2, are zero becam.e the 
Grst c&ma of_%’ is unique to another component, e.g., where XSi is non-zero, i-e_, is a 
unique peak then eqn. 6 becomes 

or 

TABLE V 

MATRIX OF SELE- MULTI-COMPONJZNT MkS SPECTRA IN GC-MS (M’). THE 
AaUA.L PURE COMPONENT SPECTRA (X)AND THE SPECMtA CALCULATED BY THE 
UNRAVL PROGRAMME 
Spectra X and caIcuJ.akd, are given in noimalized form. 

207 
191 
177 
147 
133 
96 
87 
86 
85 
84 
83 
73 
72 
71 
70 
69 
65 
64 
63 
62 
61 
60 
59 
58 
57 
56 
55 
54 
53 
50 
49 
48 
47 
44 
43 
42 

101.0 103.0 106.0 laQ_O 0.0 
10.1 10.3 10.6 10.0 0.0 
201 20.6 21-2 20.0 0.0 
10.1 10.3 10.6 10.0 0.0 
121 124 12.7 120 0.0 
11.1 11.3 11.7 11.0 0.0 
19.0 10.6 2.4 0.0 1.0 

294.5 164.3 37.2 0.0 15.5 
7.6 4.2 1.0 0.0 0.4 
1.9 1.1 0.2 00 0.1 

16.2 16.5 17.0 16.0 0.0 
45.5 46.4 47.7 45.0 0.0 
5.7 3.2 0.7 0.0 0.3 

96.0 54.0 13.1 1.0 5.0 
13.3 7.4 1.7 0.0 0.7 
5.7 3_2 0.7 0.0 0.3 

15::: 9:: 1;:; ::: ZZ 
4.0 2.4 0.4 0.0 0.0 

495.0 295.0 50.0 o-0 0.0 
44.1 26.3 4.5 0.0 0.0 
5.0 3.0 0.5 0.0 0.0 
4.5 4.5 3.3 3.0 0.0 
7.6 4.2 1.0 0.0 0.4 

1905.1 1065.2 245.3 5.0 100.0 
860.7 4S0.2 108.7 0.0 45.3 
127.4 72.0 19.0 20 6.6 
11.4 6.4 1.4 0.0 0.6 
32.3 18.0 4.1 0.0 1.7 
4.0 2.4 0.4 0.0 0.0 
9-4 5.6 1.0 0.0 0.0 

11.4 6.8 1.2 0.0 0.0 
26.7 15.9 2.7 o-0 0.0 
56.8 33.0 9.4 2.5 27 

1545.3 863.3 197.5 25 81.2 
777.1 433.5 98.2 o-0 409 

0.0 
o-0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

3x 

1CZ-: 
s.9 
1.0 
0.3 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0-S 
1.9 
2.3 
5.4 
0.6 
0.0 
0.0 

100.0 0.0 0.0 

10-O 0.0 0.0 
20.0 0.0 0.0 

10.0 0.0 0.0 
12.0 0.0 0.0 
11.0 0.0 0.0 
0.0 1.0 0.0 
0.0 1.55 0.0 
0.0 0.4 0.0 
0.0 0.1 0.0 

16.0 0.0 0.0 
45.0 0.0 0.0 
0.0 0.3 0.0 
1.0 5.0 0.0 
0.0 0.7 o-0 

0.0 0.3 0.0 
o-0 o-0 0.7 
0.0 0.0 3i.0 
0.0 0.0 0.8 
o-0 0.0 100.0 
0.0 o-0 8.9 
0.0 0.0 1.0 
3.0 0.0 0.3 
0.0 0.4 0.0 
5.0 LOO.0 0.0 
0.0 45.3 0.0 
2-o 6.6 0.0 
0.0 0.6 0.0 
0.0 1.7 0.0 
0.0 0.0 0.8 
0.0 0.0 1.9 
0.0 0.0 2.3 
0.0 0.0 5.4 
25 27 0.6 
2.5 81.2 0.0 
0.0 40.9 0.0 
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where a3 may be set cquai to -1, as the set of such equations is homogeneous. Now, 
only two such equations arc necessary to determine al and a, and therefore the first 
row of matrix Q and hence the tit row of X. If one u&component peak can be 
detected for each of the three components, then two equations such as eqn- 8 can 
immediateIy he set up far each component and hence Q and X determiued directly13. 
This task is perfarmed by the computer programme, and the derived spectra are 
printed out. In the present experiment, masses 207,86 and 62 were fed to UNRAVL 
and the following Q matrix was caIcuIated: 

0.50 -0.66 

2.24 
-1.00 I 
--1.00 (9 

2.00 --1_ao 

The matrix M’ used in this instance is given in Table V toge&ther with the actual 
matrix X and the calculated spectra_ 

In t-his simple example, free of experimental error and noise, the calculated 
spectra are the same as the component spectra bidden in M. The programme has 
worked in practice where a four-component mixture, fractianated within the mass 
spectrometer, was aualysecf25. The same principles apply to n components, provided 
that at least one u&component peak can be detected per component. Under certain 
circumstances, this condition may be rcIaxedz6_ 

CONCLUSION 

Factor analysis shows potential for determining the content and purity of 
chromatographicspectrometric systems, provided that the spectra are IinearIy 
additive, e.g., HPLC-UV by scanning during the stopped flow. 

A further step in such matrix manipulatian techniques allows the pattern 
separation of the pure component spectt to be carried out, provided that certain 
simpIe conditions arc satisfied_ 

It is apparent that in the case of real data, experimental errors and instrumental 
noise wiil make the application of these techniques more diEcult, especially when 
dealing with very badly resolved peaks. Development of UNFXAVL is continuing, 
including an investigation of the effects of simulated experimental errors, and its 
adaptation for more efficient handling of real data_ 
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